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ABSTRACT

J 6117

This paper describes the work done by the author and
others on digital computer programs for automatic enumeration
of cosets. It is followed by a brief description of some of
the work done on the finite "Burnside" groups especially by
computer enumerations. A definition for the Burnside group
33'4 of exponent 3 with 4 generators involving only 35 words

is given. K J7 HdT
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CHAPTER I

BASIC PROBLEM

If it is known that a group, G, is generated by a set

of generators: S S S, and that these generators

1 72" "t Tk

satisfy a set of relations of the form:
fi(Sl,S

ARy Sk) =E, (i=1, 2, ..., n)

then a natural question which arises is: What is the order of
the group thus defined? An equivalent way of expressing this
question is to ask how many of the combinations and permuta-
tions of the generators are distinct when subjected to the
constraints implied by the relations, fi’ and the definition
of an abstract group. For all but the most trivial of groups
the direct approach clearly involves too much manipulation
to be practical.

The most obvious technique to reduce the magnitude of
the problem is to choose as large a subgroup, H, of G as pos-
sible -~ the order of H being known from the set of defining
relations -- and enumerate all of the leftl cosets of that

subgroup. For example, suppose one wished to determine the

(1)

The choice of left or right cosets is immaterial to
the process. The reason for choosing left cosets is explained
in the paragraph of Chapter II.
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order of the group, (8,7 2,3)2, defined by the relations:

a8 = g’ =(AB)2 = alpd -k (2)

There are several choices for a subgroup. One may use the
group generated by B, denoted {é}, which is the cyclic group
of order 7, or {A}, the cyclic group of order 8. However, a

v - -1
still better choice is K!{AZ,A 113}. A% is of period 4, A B

lB = AB, is of period

is of period 3, and their product, AZ'A-
2, These generators satisfy the relations (2,3,4):

R =s3=wme)¥=E (3)

which define the symmetric group on four elements, Sy of or-
der 24. This is easily seen by setting 8™lA = S and AB = R.
Then RS = AB-B YA = a%. The order of (8,7|2,3) is known to
be 10,752; therefore, using the subgroups specified only
1536,1344, and 448 cosets would have to be enumerated respec-
tively according as the basic subgroup is {g}, {A} or K. |
| It is well known from elementary group theory that dis-

tinct cosets of the subgroup, H, have empty intersections;

that any given coset, aH, is independent of the choice of the

— g - a

2This group, which was first described by Dr. A. Sinkovs
"On the group-Defining Relations (2,3,7;p)" Annals of Mathe-
matics XXXVIII (1937), pp 580-582 and was later given an irre-
ducible definition, has been widely used as a test problem
for computer enumeration problems and thus for a comparison
of the various techniques.



representative, a, that is b€aH=>aH = bH; and that the union
of the collection of all cosets of H is the entire group, G:

G = alHuasz. . .uamH

where aeH and aiHnajH =4, i# 3

(4)

Thus if in an enumeration of G by cosets of H, m cosets were

defined, the order of G would be m times the order of H.



CHAPTER II

SYSTEMATIC ENUMERATION

In 1936 Todd and Coxeter3 presented a mechanical method
for accomplishing this type of enumeration. Except for changes
- involving the choice of conpsidering the elements of the group,
G, as right multipliers, the process to be described below
is that of Todd and Coxeter. The choice of right multipliers
(Left cosets) produces tables which are read in the conventional
manner.

Consider a typical member of the set of relations (1).
It‘would have the form: |

l 2...R = E (5)

where each Ri is one of the generators or the inverse of one
of the generators and generators are repeated if necessary.
Such a relation is called a word of { letters. For example,
if the commutator of generators A and B were to have its period

specified as 2, (5) would have the form:

A'ls'lwa'la'lAB = E (6)

In the process about to be described, there is a coset

multiplication table for each word in the set of defining

-—y s — .

33. a. Todd and H, S, M. Coxeter, "A Practical Method for
Enumerating Cosets of a Finite Abstract Group," Proceedings

of the Edinburgh gathemat;cal Society, V, Series II (1936),
pp. 26-~34.

-4-



relations, (l1). Each table has one column more than the
number of letters in the corresponding word. The generators
forming the word are placed at the head of the table between

the various columns as in the following example: Sy defined

by the relations (3).

R R S S S R S R S R S R S
4% 4% ol %
Fig. 1 -- Diagram of typical enumeration table

In Figure 1 the numbers ng, Ny, and nj3 represent cosets.

The entries are to be interpreted as nj-S = n, and ny-R = nj
and, when reading backwards, as n3-R_l = ny and n2-S“l = ny.
The constraints implied by the defining relations (1) are
applied by requiring the coset numbers at both ends of a row
to be identical.

The process is initiated by inserting in the tables the
choice for coset 1, namely the subgroup H. In the example
cited above, a reasonable choice for H is the subgroup gen-
erated by S, the cyclic group of order 3. Hence we denote
H= s = 1. It follows that 1-S = 1 since any element H is
of the form S and S + S is also of the form S . Thus the

above result is entered into the tables in every possible

position as follows:




Fig. 2.--Initial stage of enumeration

Note that at each stage of the process every table should
contain a row that begins and ends with each of the cosets

already defined. However, if any of the words may be put

in the form

A

(RlRZ...R’) = E (7)

then there is a A-fold symmetry. Repetition of rows beginning
with A-1 of the cosets will only result in repetition of the
A-th row with the entries rotated cyclicly. These repetitions
are superfluous and therefore may be omitted.

At each stage in the process when it has been determined
that no more information can be inserted in the tables, the
next coset is defined to fill an empty space in the tables.

In our example such a definition could be 1-R = 2. Then the

tables would be filled in as follows:

R R S S S R R S R S R S
1 2 1 111 1 1 1{ 2 l [h; iﬁTkl

Fig. 3.--Second stage of enumeration




In Figure 3 it is deduced that 2°R = 1. Algebraically this

. 2
deduction is a consequence of the relation R™ = E. Coset 2

2 a

is of the form s®R. Thus 2-R is of the form s“-R® = s®E = s

= 1. As the process continues, more instances of deduced
information will occur. The advantage of this mechanical pro-
cedure is that the algebraic consequences of the defining re-
lations are handled automatically, thus eliminating the
necessity for abstract manipulation.

Also note that (RS)4 = E is a relation of the form (7)
as in fact are the other two. Therefore, a row beginning and
ending with coset 2 is superfluous and hence was omitted in
Figure 3.

The next pair of definitions might be 2.S = 3 followed
by 3.8 = 4 from which it is deduced that 4-S = 2. At this

point, the tables appear as follows:

R R S K RS R, R__S R___ S
2 1 1]1 1 1 1}]12 3 4 2 111
3 2 3 4 1 2 4 3 4
4

Fig. 4.--Later stage of enumeration
From this point one might proceed as follows. Define 3:R = 5
thus deducing that 5-R = 3. Then define 4-R = 6 deducing that

6-R = 4 and 5-5 = 6. At this point the tables appear as follows:



R R S S S R S R S R S R S
231 1 1 1 1 x| 2 3*15 16X} 4 | 2*%]1 1
513 2 314]2 4*1 6 5%1 3 4
6 4 5 6 5

Fig. 5.--Still later stage of enumeration

Note that the starred coset numbers are in symmetrical posi-
tions and hence only two rows need to be carried in the chart
corresponding to the relation (RS)4 = E.

The next pair of definitions might then be 6-S = 7 which
leads to 7-S = 5 and finally 7-R = 8 from which the results
8‘R = 7 and 8-5 = 8 are easily found. At this point the tables
have "closed up" and the process is complete. The resulting

tables appear below:

R R S S __ S R S R S R S R S
211 1]1 1]1 1 ]2 3 5 614 2 11
5143 213 4 2 4 |6 7 8 | 8 715 3 14
6 14 516 7 5
8 7 8 ]8 8 |8

Fig. 6.--Completed enumeration
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There were 8 cosets defined and since H is of order 3,
the order of the group (2,3,4) is 24. The coset multipli-

cation table may be summarized in the following diagram:

Fig. 7.--Coset diagram for (2,3,4)
Any path from 1 to n yields an expression for an element of
coset n. For example, the element SRSRSZR in coset 8 cor-
responds to the path 1-1-2-4-6-5-7-8 on Figure 7.
In the process, it may occur that two different coset

numbers are discovered to actually represent the same coset.

When such a coincidence occurs, the larger number is replaced
throughout the tables by the smaller and the process continues.
When working by hand it may be convenient to use the larger

number as that of the next coset defined.
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As an example of a simple enumeration which involves
a coincidence consider Klein's simple group of order 168

defined by the relations (2,3,7:4):

p* =0’ = (en)’ = @' rlom? = E (8)
Let PQ = R and Q-1 = S. Then we have P = PQ-Q_l = RS and
Q—lP-lQP = (PQ)--1 Q-PQ-Q_l = R-lS-lRS. Thus relations (8)
imply

R' =5 = ®s)? = ®RIstre)? = & (9)

We now define the basic subgroup as {é} so that 1-R =1

and proceed as indicated in the following table:



TABLE 1:

Definition

-11-

DEFINITIONS FOR (2,3,7:4)

Implied Consequences

1-s =
2°s =
3R =
4.8 =
5-R™1
6-5"1
7-R =
8°S =
9-r-1

2
3
4
5

°© o 1

10

10°s~1 = 11

11-R =
4.R =
13-R =

1

12
3
14

11-r~1 = 15

9-R =
14-s-1
17-R =
18-8 =
19-r-1
20-s5-1
21°R =
22.8 =
23-r-1

1

6
= 17
18
19
= 20
= 21
22
23
= 24

3-s =1 2-R =

12-s = 4 5.8 =

13.8 = 11 10-s
14-R = 6

9-5 = 15 15.8
16-8 = 7 6°S
16-R = 17

12<R =

7
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At this point the tables appear as in figure 8:

R R R R R R R s _ R S R s
1 {111 fr)1)1{a 1 311 1{1 ]2 1|
2 | 3 13 J14{6 |5 |2 4 12 ] 4 | 31415 1213
7 .18 15111 }12 } 7 6 lie ] 716 4 113111112124
9 |16]17 18 10 | 9 8 |9 J15)]s8 6 |5 J12]7 ] e
19 20 J19 j13]10 j13 J11 10|77 |8 | 9o lie | 7
21 | 22 21 14 17 ] 14 8 5 | 8
23 24 |23 18 {19 18] J10)9 Ji5111 J10]|
[ 20 21 | 20 (13 114 10 | 13
22 ] 23 22 14| 6 J16}17 ] 14
24 24 17 J18 | 19 17
18 18
20] 19 21 |20
21 22 | 23 21
| 22 22
24} 23 24
RTs 'R s rRlstr s rls? s rl'str s
1 31415 |6 |7 9 l10f11]1 3 121311
2 4 113111 135190 l16f 7 f12)5 | 2 2 11 11 ]2
6 11417118 | 19120 |21 ] 221231]124 10f1314 J12] 7 1 6
8 16117 } 14 j13f10f 9 |15 1518
10 8 g8 1i1sl11]10
12111}131] 14 17}16 1 6 12}
16| 9 |8 141 6 |16
18 | 17 18
20 21120
21 21
221 21 22
24 24
Fig. 8 -- (2,3,7:4) Dbefore the first coincidence
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If the next definition made is: 24-.S~1 = 25 we deduce from
(R_ls_le)4 = E that 25°R = 10 and then from (RS)2 = B

that 14.S = 25. At this point we have coset 25 in two pre-
viously distinct rows in the table corresponding to S3 = E.
Comparing the rows we discover that 17=24, i.e. that

the cosets represented by these two numbers are really the
same. Next by comparing the rows containing 17 and 24 in
the tables corresponding to R7 = E we deduce that 18=23.
A further search.of the tables quickly indicates that no
further consequential coincidences result. Thus we replace
24 by 17, 23 by 18, and 25 (the only coset defined after

23 and 24) by 23 (the lowest vacated coset number) and

eliminate the rows which are duplicated. The resulting

tables are then shown in figure 9:




111 1 jJ111}1])1 112 |3]1 1{1]2]3]}]1
213 14 §131141 615 % 4 1511214 31415 3
218 15 ,11}12}17 6 11617 16 4 J13)11l12] 4
g l16]17]18 23} 10} 9 8 lo9li1s]s8 6 5121 7] 6
19 2019 10f13f11]10 7181916}l 7

21122 21 14]23)17114] 8 15414

18119 22} 18 10§ 9 fi1s] 1110

20 21 20 13]14]23] 10{ i3

14} 6 J16 | 17} 14

17} 18119 17

20] 19 21| 20

21} 22118 21

22 22
111 131ajstelzls 10111}12}4 1
2 |5 13 J11}15]9 fi16]7 J121 5 |2 |3 1 ]2
6 114117 |18 1194202122118} 17}2310f13} 4 l12] 7 |6
8 17 11617 141310} 9 |15 8
1019 | 8 15 111 ]10
12 ,11,13]14 17j16| 6 | 5 |12
16 | 9 14 16
20 21120
21 21
am—

22121 | 22|

Fig. 9--(2,3,7:4) after processing the first coincidence
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We may then proceed as before to finish the enumeration.
It turns out with one scheme of definitions (that used by
the author's computer enumeration program) that 27 cosets
will have to be defined and then a coincidence will reduce
the number to 24 at which point the tables close-up. Thus
the group (2,3,7;4) is of order 7-24 = 168 as expected.

The order of defining new cosets is completely immaterial
to the success of an enumeration. However, by a judicial
sequence of definitions, the number of coincidences may be
minimized. Experience seems to indicate that many groups
cannot be enumerated without the occurrence of coincidences.
As interesting examples of this I refer to John Leech's

recent paper4 where he cites private correspondence with Todd

suggesting that two groups: Klein's simple group of order

168 defined by:

(A'lB)3 (A2B2)4
or (10)
B’ = (AB) 2 (A"lB) 3 (A3B4) 3

B = (AB)2

Il
o

I
o]

and the previously cited group, (8,7'2,3), defined by (2),
2 -1 .
when enumerated as cosets of {ﬁ} and {A ;A B respectively,

cannot be enumerated without the occurrence of coincidences.

John Leech. "Coset Enumeration on Digital Computers, "
Proceedings of the Cambridge Philosophical Society, LIX
(1963), 285




CHAPTER III

ENUMERATION BY MACHINE

Introduction

In 1957 Coxeter and Moser stated in the introduction
to their book that the "method (for systematic enumeration)
is sufficiently mechanical for the use of an electronic com-
puter."5 Since then several people have independently
written programs for various machines to accomplish this
task.

Leech gave a history of the work done on this problem
that was known to him at the time of publication of his paper.®
He gave an excellent description of the work of C. B. Hasel-
grove and his own work. He then cited the work of R. Maddison
and A. Sinkov. All of the above mentioned programs used
basically the same logic and of these, the work of Sinkov is

best known to the author of this paper.

Description of Logic Used by by Sinkov

The first important way in which all of the computer

programs differ from the hand method is in the elimination

5H. M. S. Coxeter and W. O. T. Moser, Generators 2

Relations for Discrete Groups (Berlin: Springer-Verla
1957), p. v.

6Leech, pp. 259-263

~16-
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of the tables for each relation. Instead, tables are car-
ried only for each generator and its inverse. This results
in a considerable saving of storage space and therefore per-
mits a larger group to be enumerated. The defining rela-
tions are stored in the machine and the generators comprising
the relations are fetched as needed.

Sinkov's program essentially applies each coset in turn

to each of the defining relations in turn. Assume that a,

is the current coset number, that m cosets have already been

defined, and that fi(Sl,S

2,...,Sn) = RlR2"'32 = E is the

current defining relation. Then aORl is extracted from the

table for the generator R If a,R, is defined e.gq.

1° 0°1 = a

agRy = 23y

then alR2 is extracted from the table and so on. If for some

J. ajRj+l is not defined, it is immediately defined as co-

set m+l, the appropriate entries are made in the tables, and
the processing continues. When the end of the relation is
reached, a test is made to determine if ay = ak . If a, # é’,

a coincidence has been discovered. If a0 = al or if a coin-

cidence and all consequential coincidences have been processed,

the current coset, is applied in like manner to the next

ao,

relation. When the coset a, has been applied to all of the

relations, the next coset a0+l is applied to the relations
in turn. The process is complete when the last coset defined

has been applied to all of the relations, without causing

any new definitions to be introduced.
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When a coincidence, aZ b, with a<b, is discovered,
the row corresponding to coset b is examined for all generators
and inverses. If a given entry, bRi' is undefined, no action
is necessary and the next entry is examined. Otherwise a
test is made to see if bRi = b and if that is the case, it
is replaced by a. If bRi # b, then the inverse entry (bRi)Ri—l
is deleted from the table. Next the entry aRi is examined.

If aRi is not defined, the entry bRi is inserted. If aRi is
defined and aRi = b it is replaced by a. Otherwise a new co-
incidence is set up between aRi and bRi' Then a check is made
to determine if (aRi)Ri_l is defined and if not, a is inserted.
Finally the entries in the row b are deleted (made zero).

The list of coincidences awaiting processing is sorted
lexicographically so that redundant information need not be
stored and also to assure that no coincidence is processed
on a row already made zero.

After the entire list of coincidences has been processed,
it is desirable for efficient use of memory space to eliminate
the vacated rows from all the tables. This is easily done
by using the coincidence routine to set up an artificial
coincidence between the first empty row and the next non-
empty one. This process is repeated until the tables are

again without empty rows.
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Description of Logic Used by Author

The program written by the author of this paper uses
the other logic scheme presented in the literature. The
method is essentially that of H. Felsch’ although the program
was written independently. This method was also used by
Bandler (see Leech's paper8) although he did not program
for automatic processing of coincidences.

The author's program was originally written for the
IBM 1620, but in the spring of 1963 an IBM 7090 was delivered
to the Computer Center of the University of Maryland, so
the program was rewritten and modified using Fortran II
for the 7090. Fortran II is a problem oriented programming
language and hence a source listing of the program (see
Appendix) may be of interest.

Basically the procedure used in this program is as follows:
The cosets are applied sequentially to the defining relations
in turn as before; however, when the forward working is
halted by an undefined coset, the current coset is then
applied to the inverse of the last generator in the relation.
This backward working proceeds in a manner similar to the

forward working and one of three things may happen. First,

7H. Felsch, "Programmierung der Restklassenabzaehlung
einer Gruppe nach Untergruppen," Numerische Mathematik, III
(1961), pp. 250-256

8Leech, p- 262.
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the backward working may encounter an undefined coset in which
case a new coset is defined; second, the backward working
may just meet the forward working, in which case new infor-
mation has been deduced; or third, the forward working and
the backward working may overlap, in which case a coincidence
is deduced. When a new coset is defined or when new infor-
mation is deduced, e.g., aRi = b, every occurrence of the
generator Ri or its inverse Ri_l is examined. The coset a
is applied to the word in which the generator Ri appeared
shifted cyclicaly to begin with Ri' The same procedure as
in the general working is used, namely, upon reaching a
gap in the forward working, backward working is begun. How-
ever, if a void is discovered a new definition is not made.
New information discovered in this manner is entered into
the multiplication tables and stored away for future processing.
Coincidences are handled in the same manner as in Sinkov's pro-
gram except that provision is made to make any necessary
changes to the table of information awaiting processing that
might have occurred due to the processing of subsequent
coincidences.

In Leech's paper he stated, "No direct comparison of
running times with the two methods is available at present

as the machine speeds are widely different; this must wait
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until both methods have been programmed for the same machine."®
A partial answer to this question is now available since
Sinkov's problem was written for the IBM 704 and is capable

of being run on the IBM 7090. The following chart from a
report written by Sinkov for the Computer Science Center at

the University of Maryland in June 1963 shows a comparison

of running times on the classical problem (8,7}2,3). The

author's running time has been added.

TABLE I

COMPARISON OF COMPUTER RUNNING TIMES
ON THE GROUP (8,7|2,3)

Person Machine Cosets Required Time

Todd By hand 945 >30 hours
Felsch Zeus 22 1300 ~2 hours
Leech EDSAC 2 2000 42 minutes
Sinkov IBM 7090 2176 5 minutes
Leech KDF 9 2 min. 30
Snively IBM 7090 1747 1 min. 36

The faster time obtained by the author's program is not

necessarily indicative of more efficient logic.

The author's

logic is considerably more complicated and therefore takes

up more storage space thus limiting the size of the problem

that may be handled within the memory of the machine.

In

9Leech, pP. 263

secC.
secC.
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fact the author's program can enumerate 10000/n cosets
where n is the number of generators of the group being
enumerated. Running times are expected to vary widely
from problem to problem. The Felsch logic would be better
in a problem that involves a large number of excess cosets
to be defined since relatively few excess cosets are de-

fined by the author's scheme.



CHAPTER 1V

THE BURNSIDE PROBLEM

In 1902 Burnside stated what is commonly called the
Burnside problem: can the order of a group with a finite
number of generators be infinite while the period of each
element in the group is finite?l0 To the author's knowledge,
the problem remains unsolved, for although a Russian mathe-
matician, Novikov, claimed to have answered it affirmatively,
his proof has not yet been published.

A more specialized problem may be stated simply: assume
the groups under consideration are finitely generated and
that the orders of every element in the group, are bounded.

Suppose, for example, S S ,...,Sr generate a group, B

1’ "2 n,r’

and every element REBn r satisfies the relation rR” = E.

’

Then Bn is called the Burnside group of exponent n with

7

r generators. This Burnside problem now reduces to the

question: which of the groups Bn . are finite?

1

10y, Burnside, "On an Unsettled Question in the Theory
of Discontinuous Groups," Quarterly Journal of Pure and
Applied Mathematics, XXXIII (1902), p. 230-238

-23-
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In his book Marshall Hall summarizes the work done on

this problem up to 1959.11 Some interesting results are:

1. B2 r is finite (for finite r), namely the abelian group

of the form:

C2xC2x...xC2

(11)
r factors
2. B3 c is finite and of order:
2
r(r +5)
3 6 (12)

- This result was obtained by Levi and van der Waerden.l2

3. B, _ is finite. This result was obtained by Sanov.l3

4, B, , if it is finite, has order at most 534 (see Kostrikin)l4

’

llM. Hall, The Theory of Groups. (New York: The
MacMillan Company, 1959), pp. 320-338

12 1pig., p. 321

13 1mpia., p. 324

- 14 1pid4., p. 327
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5. B6 is finite and of order:
2
b(b™+5)
a 6
23
where:
r§r2+52
a = 1+(r-1)3 6 (13)
and:

b = 1+(r-1)2°

This result was obtained by M. Hall.l5

Although the orders of the groups B3,r are known, sets
of irreducible or nearly irreducible defining relations
are not known for all of these groups. In attempting to
find such sets of defining relations, one finds a good
application for computer enumeration. The technique used
is to overdefine the group, that is, to fix the periods
of more elements of the group than is necessary to de-
fine the group. Then when the order of the group is
thus determined (if not already known) the enumeration
is rerun with some of the relations removed. If a group
of the same order results, the relations removed were re-

dundant, i.e., an algebraic consequence of the remaining

relations. By proceeding in this manner, a non-redundant

15 1pig., p. 336-337
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set of relations may be obtained.

B3 1 is, of course, the cyclic group of order 3 satis-

fying the relation:

A" = E (14)
B3 X of order 27, satisfies the following set of relations:
aAd-sd- @amd= a7l =k (15)

In his 1963 paper, Leech gave his results for the group

33 3.16 He obtained his results by enumerating the 81 co-

sets of A,B which is B3 5 of order 27. One of the resulting
1

definitions is:

3 3 cd = (AB)3 = (Ac)3 = (BC)3 = (A_lB)3 =

b
I
w
I

1

(B'lc)3 = (ABc)3 = (A Bc)3 = (AB—lC)3 =

gl
o
0
S
w
I

(ABC—1)3 = E

His enumeration was performed on EDSAC 2. The memory of EDSAC 2

was not large enough to permit the enumeration of B3 4- This

is the problem solved by the author on the IBM 7090.

In approaching the problem of B with generators

3,4
A,B,C,D the first step was to consider the generators in all
combinations of three and assure that they satisfy the relations

(14). When this is done, we are assured that all words con-

taining only three of the four generators are of exponent 3.

16reech, p. 264
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To accomplish this, it was sufficient to specify the periods

of 32 elements. These are:

fl

@B)> = (ac)> = @p)> = (8c)® = (D)3

a8 = alo)® = ;) = 57lo)d -
@Bc)® = a7lse)® = @ le)d = (aBc”
acp)® = a~tep)? = aclp)? = (AcD
(Bcp)® = (871ep)d = (8c™1p)*® = (Bcp™

(CD)3 = E

&) = (¢ Ipy3 = &

1.3

)" = E (17)
1,3 _ g
13 _ g

Let Wij = nglR €2R €3R €4 where (i = 1,2,...,6) and

2 3 4

(j = 1,2,...,8) such that if Yj = (gl,gz,g3,g4) we have

Yl = (1,1,1,1) Y5
Y2 = (-1,1,1,1) Y6
Y3 = (1,-1,1,1) Y7
Y4 = (llll-lll) Y8
and
Wll = ABCD W4l
W2l = ABDC WSl
W31 = ACBD W6l

It is readily verified that if A,B,C, and

(17) and

3 . .
Wij = E (i=1,2,...,6; J

D

(llllll"l)
(_ll_ll lll)
(18)
(-llll_lll)
(-llll ll—l)
ACDB
ACBC (19)
ADCB

satisfy relations

1,2,...,8) (20)
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that all words of four letters have period 3. A computer

enumeration using relations (17) and (20) of cosets of B3 3 =
’

{A,B,é} gave a group of order 314, the known order of B3 n

A later series of enumerations proved that it is only necessary
for i to assume 3 values in (20) in order for (17) and (20)
to define B3 4 although not all choices of 3 values for i

were successful. Those which were successful are:

i=1,2,3 i=2,3,6
i=1,2,5 i=2,5,6
i=1,3,4 i=3,4,6 (21)
i=1,4,5 i=4,5,6

The next experiment tried was to hold i fixed at i = 1,2,3

and vary the values permitted to j. The following sets of

defining relations were thereby obtained for 33’4:
Relations (17) and r No. of words
(3 =1,2,...,8) 56
(j = 2,3,...,8) 53
(3 = 3,4,...,8) 50
(§ = 4,5,...,8) 47
Wij3 = E,(i=1,2,3) 4 (5 =5,6,...,8) 44 (22)
(3 = 6,7,8) 41
(j = 7.8) 38
(3 =1) 35
(3 = é) 35
.
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Since an enumeration of relations (17) alone failed to give
closure before memory capacity was exceeded it is quite
likely that the last eight successful sets of defining
relations in (22) are irreducible. A complete proof of

the last statement by enumerations would require 35
enumerations for each definition or about 72 hours of 7090

computer time.




CHAPTER V

OUTLOOK FCR THE FUTURE

The obvious next step would be to attempt to determine

a set of defining relations for B This, however, is a

3,57
problem which far exceeds the capability of the 7090 since
B3,5 is of order 325 and the largest subgroup available for
an enumeration is B3,4 of order 314 which would require

a total of 3ll cosets to be defined. Since there are tables
for each generator and its inverse, a total of 10 tables,
this means that a total of 1,771,470 table entries must be
provided. Even packing two entries to a word (31¥< 218)
only 65,536 entries can be provided, not allowing room for
the program and other tables.

A means of extending the program's capabilities would
be to store the tables on magnetic tape and call them into
memory as needed; however, this is very impractical because
such operations are quite time consuming and large amounts
of computer time are not readily available.

Another possibility for solving this problem is a disk
storage similar to the IBM 1301, but unfortunately this was
not available to the author.

However, the work on B did permit a conjecture.

3,4

Given the definition for group B it seems likely that in

3,n’

addition to the combinations of relations needed to define

-30-
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. +
B3 n as a subgroup of B3 n+l in ig—j-;lg‘ ways it is only

’

necessary to add a portion of the words of n + 1 letters

to completely define B3,n+l'

Another interesting question 1s the study of B5 X

however, the largest readily known subgroup available is

Cc the cyclic group of order 5. Even if the order

o

5!
10
of B5 5 were as low as 5 one would have to enumerate
59 = 1,953,125 cosets, a task which is well beyond the

capability of the 7090 without an extremely large random
access storage.

In the future one may expect computers to become
faster and to have larger memories. At the current machine
speed a memory of 5,000,000 IBM 7090 words would enable
the author's program to undertake the problem of B and

3,5

possibly B however, the time reguired to run these problems

5,2’
would be prohibitive. With a hundred fold increase in pro-

cessing speed these two problems would be well within the

range of machine enumeration.
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-32-~




~ A MALN
» LIST8 MAIN 01
* LABEL S T MATNT 02
C 7090 COSET EVALUATION ~ FELSCH LOGIC - JAMES We SNIVELYs JRe MAIN 03
DIMENSION ICHRT{20000)sTCOINI (100014 1COINZ(1000) sIGENCIO0FIZT —  MAIN 0% —
DIMENSION IPOWR(100)sNLETR(1001s1TBL(10+200)sIWPG(10)+ITALLY(100) MAIN 05
DIMENSTON TNFOI{S0T s INFOZ(50) s INFOI (501 —MATN 06
COMMON  RWORD s NORD s NUM s NGENS s MAX s MAXROW » NDEF » IWORK » IWAIT o IR MAIN 07
“COMMON LPWMAX s LWPGMX s TCTMAX s IWMAX » ICMAX s INSNOUT s ITRSNJOBSNIOBS —— MAIN 08 —
COMMON ISCANsILOOK»ITALLY s INFO14INFO2,INFO3, IWPGeITBL MAIN 09
~ COMMON NRLETRsTPOWRs TGENs 1COINT s TCOINZ ¢ ICHRT ™ MAIN—10—
NJOB=1 MAIN 11
IN=S = MATN— 12—
NOUT=6 ‘ MAIN 13
LPWMAXSI4 . MATN 14 —
LWPGMX=200 MAIN 15
“ICTMAX=20006 B B e MATN 16
IWMAX=50 MAIN 17
ICMAX=1000 B —— S MATN 18—
IWAIT=0 MAIN 19
READ INPUT TAPE INs60C,NJOBS - T MATN 20
10 CALL CLOCK{6H= TIMEs=1) MAIN 21
CALL INPUT ' o MAIN 22—
CALL ARRAY MAIN 23
. “CALL RESET SR MATN 26—
- CALL_ SCAN.. . MAIN 28
IF (NJOB=NJOBSY “‘Lﬁ,ﬁﬁ.ﬁ'ﬁ*‘*“" - : MATN—26——
. 40 NJOB=NJOB+l L MAIN 27
B ) 60 TO 10 S a T MATH 28—
50 CALL CLOCK(6H= TIMEs=1) MAIN 29
“CALL EXIT e MATN—30—
60 FORMAT(15) MAIN 31
END e e MAENT 32
INPUT
* LIST8 o A ’ ST UUIRPUT BT
* LABEL INPUT 02
" "SUBROUTTNE TNPUT IRPUT 03—
DIMENSION xcaarxzeooo».xcoxn1(1ooo;.IcoxuzcloOO).IGEN(loo.lsw INPUT 04
Iﬁ?tﬂ' 06
TNORD YN DEF o INPYT T —
‘,Lﬁﬁﬁnx.xcraax,1wuax.1cqu.xn.nour.xrkauaoa.naass INPUT 08
- : ; HPUT 09—
COMMON 5&2?R:IPO&R.IGEN,ICOIN1.ICOZNZ.ICHRT : INPUT 10
T READ INPUT TAPE INs203NWORD I . 4L T
DO 10 I=1,NWORD INPUT 12
~T " READ IRPUT TAPE IN+30,NLETR{ITIPOWRTI) INPUT 13—
K=NLETR(I) INPUT 14
10 READ INPUT TAPE IN»40s(IGEN(TsJ)sJ=1sK) INPUT 15
READ INPUT TAPE IN»50,NORD,ITRsNGENS : INPUT 16
o RETURN o INPUT IT
20 FORMAT(15) INPUT 18
~° 30 FORMAT(215] DR o o INPUT 19
40 FORMAT(1315) INPUT 20

_.\.v:>~.. _.Sc_ ..? JR '| I T_!_3_I_5 , . e - - R e — lm—zt___
- END o B o INPUT 22




S — - S © 7 TTARRAY T

* LIST8 ARRAY 01

* LABEL T e e e  ARRAY 02
| SUBROUTINE ARRAY ARRAY 03
————DIMENSTON TCRRT{2000071, ICOTNITIO00T ICOTN2(I000) 5 IGENTIO0F 13T ARRAY 0% ]

| DIMENSION IPOWR(100)sNLETR(100)»1TBL(10+200)sIWPG(10)sITALLY(100) ARRAY 05

T “DIMENSION INFOYI(SOY» INFOZTSOVINFOIT50)Y — T T ARRAY 06

| COMMON NWORD sNORD s NUMyNGENS sMAX s MAXROW ¢ NDEF » IWORK » IWAIT# IR ARRAY 07

TTT T COMMON T LPWMAX s LWPGHX s TCTMAX s TWMAXy ICMAXS TNYNOUT s ITRyNJOBINIOES ——ARRAY 08—

COMMON I1SCANILOOKs ITALLY»INFO1lyINFO2sINFO3, IWPGsITBL ARRAY 09 -

T TCOMMON NLETR IPOWRYIGEN ICOTNI» TCOINZS TCHRT —ARRAY 10

DO 40 I=1sNGENS ARRAY 11

IT=T o - o I ~ ARRAY 12

DO 30 J=1,NWORD ARRAY 13

S T JJENLETR(J) T oo T ARRAY T 14 T

DO 30 K=1,JJ ARRAY 15 4

T T IFUXABSFUIGENTJ»K)Y=T17 30,205,300 R T ARRAY 16
20 ITBL(IsI1)=LPWMAX*J+K ARRAY 17

o II=11+%1 — o ARRAY 18
IF(1I-LWPGMX) 30G»30,50 ARRAY 19

30 CONTINUE B S s e ARRAY 20
40 IWPG(I)=11~]1 ARRAY 21

T RETURN TARRAY 22 ]
-7 30 CALL ERROR(1) ARRAY 23

L RETURN e = s ARRKY 2% T

.- END ' : ARRAY 25 |

R - - ; = o - S TTRESET
* LIST8 RESET 01

A CABEL e TTRESET 02—

SUBROUTINE RESET RESET 03 |

DIMENSTON TCHRT(200007» ICOIN1I(1000), ICOINZTI000) s IGENT100s23) — ~ RESET 04

DIMENSION IPOWR(100)sNLETR(100), ITBL(IO;ZOO)cINPG(lO)olTALLY(IOO) RESET 05
T DIMENSTON INFOI(50)s INFO2TSOT>INFO3(50) —RESET 06
COMMON NWURDoNORD9NUMNGENS s MAX s MAXROW ¢ NDEF » IWORK » IWAITH IR RESET 07
—COMMON LPWMAXS LWPGMX 3 TCTMAX G TWMAX TCMAX S TNy NOUTH T TRINJOBINIOBS — RESET 08—

COMMON ISCAN»ILOOK, ITALLYINFO1,INFO2s INFO3, IWPG,ITBL RESET 09

~— COMMON NLETRs IPOWRy IGEN; TCOINIZ ICOINZZTCHRT — RESET-10
MAXROW= 1 CTMAX/ (Z#NGENS) - RESET 11 -

- - — RESET-12

- Do 1e~1-1,§if
10 TCHRY(T1=0

READ INPUT TAPE IN»60sNsNDEF
“IFIN] 40440520

13

20 DO 30 I=1lsN RE$ET 3 A
T READ INPUT TAPE INsTOsdsKel — — - "RESET 18 -
CALL SEEK{(=JsKM) RESEY 19
ICHRT(MY=L R T T RESET 20—
CALL SEEK(-L.-K.M) RESET 21
3 O ICHRT ‘ﬂ, iJ T T B 7 - - — RESET zzd. -—
40 MAX=NDEF RESET 23
T 7 IR=Q T — T RESET 24
DO 50 I=1sNWORD RESET 25
‘**SU“TTIttYTTT'U ““““ - RESET 26—
RESEY 27

- RETURN
M




R e = - ,33.5_;* e -
- 60 FORMAT(213) ) o e e T © " RESET 28
70 FORMAT{(315) RESET 29
END ' T e T T : - o RESET 30
SCAN

B ] LIsT8 - e S CANTTTOY
* LABEL SCAN 02
o SUBROUTINE SCAN 77— T T SCAN 03
DIMENSION ICHRT(ZOOOO)oICOINl(lOOO).ICOINZ(IOOO):IGEN(1009131 SCAN 04

" DIMENSTON TPOWR(IUOI»NLETRUIOOTSITBLILI0+s200)5IWPGLI0)sITALLYC100) SCAN 05

DIMENSION INFO1(50)»INFO2(50)+INF03(50) SCAN 06
- COMMON NWORDy NORDyRUMTNGENS sMAX s MAXROWS NDEF 3y TWORKSTWATTy IR —  SCAN—OQT —
COMMON LPWMAX 9 LWPGMX » ICTMAX » IWMAX s ICMAX » INsNOUT » I TRy NJOB yNJOBS SCAN 08
- ~ COMMON TSCAN> TLOOK s I TALLY S INFOLsINFO2, INFO3 IWPGs ITBL - SCAN- 09 -
COMMON NLETR,IPOWRs IGENs ICOIN1» ICOIN2y ICHRT SCAN 10
- — GO TO (300U,100091000,100CTITR—— ———~ S - —SCAN 11
1000 WRITE OUTPUT TAPE NOUT,2000 SCAN 12
— 2000 FORMATUSHISCANY S s e CSCANT 13
3000 ISCAN=0 SCAN 14
“10 ISCAN=ISCAN®1 e ST SCAN 15
DO 150 J=1,NWORD SCAN 16
- 15 TWORK=ISCAN = e - -SCAN-—XT
KK=IPOWR(J) SCAN 18
CCENCETRTI) . - - - - SCANTTY
" e DO 20 K=l,KK SCAN 20
PO 20 L=l B i —SCAN 21
. CALL SEEK(IWORK»sIGEN(JsL)4M) SCAN 22
O TO (20340 M e SCAR 23 —
20 CONTINUE SCAN 2&
T IF{TWORK=TSCAN) 305150530 —  ~——— — — ——— o oo —— SCAN 2%
30 CALL COINC{IWORKsISCANsJ) SCAN 26
- GO TO 14% e : : SCAN 27
40 IST=IWORK SCAN 28
ST IWORKEISCAN - o e e e oo o o SCAN -29
KT=K+1 SCAN 30
CT=t+1 e - - SEAN-—31
IF(KT-KK) 50+50»70 SCAN 32
————50 D0 60 KEKTyKK = - S e o —SCAN- 33
DO 60 N=lsli SCAN 34
twtt+s}yys N7 7 70— - R T e SCAN 35—
CALL SEEK(IWORKs~IGEN(JsL) M) SCAN 36
GO TO 603 1%0 M SCAN—3?—
60 CONTINUE SCAN 38
—T0 TF{LT=LL} 803805100 - — - e~ SCAN 39 -
80 DO 90 N=LT,LL SCAN 40
— LETELFLTISN - 2 e T s e AN
CALL SEEK(INORK.*IGEN(J.L).M) SCAN 42
GO TO 190 I&0T#M , T SCAN &3 —
90 CONTINUE SCAN 44
- - 10U LELT-1 — e - e e - SCAN 45 -
CALL SEEK(IWORK’~IGEN(J.LloM) SCAN 46
T GO YO (110,1201eM T - T o SCAN 47
110 CALL COINC(IWORK+IST sJ) SCAN 48
- GO TO 145 - T STAN &9
-120 CALL INFO(IST,IGEN(JsL)sIWORK) SCAN 50
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GO TO 130 T T oo o ' SCAN 51
130 CALL LOOKI(ISTvIGEN(J-L)OIWORK) SCAN 52
GO TO 150 - oo ' T SCAN 53
140 L=LT~-1 SCAN 54
CALLT DEFINETTST IGENTILY) o SCANTTSS
GO 70 15 SCAN 56
TTI&S CALL CLOSE - B et e SCAN 857
150 CONTINUE SCAN 58
T IFUISCAN=NDEFT 10,160,160 "~ 77 oo o e e - S CANT 8 T
160 CALL FINISH SCAN 60
— RETURN SCAN 861
END SCAN 62
Ty ST S N U e - - ﬁEF tNE B -
* LISTE DEFINEOL
»———*—— - LABtL s e e o e e e e e e et D—E«Frinsoz e
SUBROUTINE DEFINE(INXyINY) DEFINEO3
— DIMENSION TCHRT(200007T3TCOINITICU0T 5 COIN2ZT1000 s TGENt 1009131 DEFINEQS —
DIMENSION IPOWR(10C)sNLETR(1GO), ITBL(IO’ZOO);IWPG(IO’:ITALLY(lOO) DEFINEOS
- DIMENSION INFO1(50)INFO2(50)»INFO3(50) DEFINEQS
COMMON NWORDsNORD s NUMyNGENS ¢sMAX s MAXROW 9y NDEF » IWORK s IWAIT» IR DEF INEQ7
T COMMON LPWHAX, LWPGMX s TCTMAX s IWMAX s ICMAX s TNy NOUT» ITRyNJOB I NJOBS DEFINEGS
COMMON ISCANsILOOKs ITALLYINFOLlsINFO2sINFO3,IWPGyITBL DEF INEOS
COMMON RLETRY TPOWRS IGENZICOINT S ICOINZSICHRRT "~ DEFIREL1D
GO TO (3000910009100091000)»1TR DEFINE1l
1000~ WR1TE OUTPUT TAPE NOUT 520003 FRXsINY ——— ———— — ———— -~ — DEFINEL2 —
2000 FORMATI(8H DEFINE(;Iﬁ’leQIBolH)) DEFINE13
3000 TX™INX T e - e DEFENELS —
Iv=1INY DEFINELS
- NDEFENDEF+I —eoe -~ DEFINE16
IF (NDEF-MAX) 20:20 10 DEFINE17
10 MAX=NDEF - T e e e ' "DEFINELS
20 IF(NDEF-MAXROW) 40940,30 DEF INELS
- 30 CALL ERROR(2) o ' ’ DEFINE20
40 CALL SEEK(=IXsIYsl) DEFINEZ21
)————— ~ TCHART (I T=ERDEF T T OEFINE22
CALL SEEK(=NDEFs=1Ysl) DEF INE23
T U TCHRTUIY=LX T o oo DEFINE24
CALL LQOKI(IX&IY?NDEF} DEF INEZ5
- RETURN e o o —— DEFINE26
END : DEF INE2Y
. ‘L ne
* LIsT8 LOOKI 01
¥ T LABEL o T T - T LOOKT 02
SUBROUTINE LOOKI(INX9INYvINZ) LOOK] 03

T DIMENSION ICHRT(20000Y,ICOINI(1000),ICOIN2TIC00)»IGEN(100913) ~ ~LOOKI 0%
DIMENSION IPOHR(IOO):NLETR(loclolTBL(IOQZOO)yIWPG(IO)oITALLY(lOOI LOOKI 05

T~ DIMENSTON INFOIUS50)15INFO2(S0TvINFOI(S0Y - e LOOKT 06—
COMMON NWORD sNORD sNUMgNGENS sMAXsMAXROW ¢ NDEF » IWORK» IWAIT» IR LOOKI 07
- COMMON LPWMAX » LWPGMX 3 ICTMAX 3 TWMAX » ICMAX s INSNOUTsITRoeNJOD 9y NJIOBS LOOKI 08
COMMON ISCAN’ILOOKQITALLY.INFOI’INFOZtINF03;IHPGQITBL LOOK] 09
7 COMMON NLETR»IPCWR» IGENsICOIN1sICUINZ2s ICHRT LOOKI 10
. GO TO (30CUs30009300051000)17TR LOOKI 11
T000 WRITE OQUTPUT TAPE NOUT, 2000 INKYINYsINZ 7~ LOOKT 12

8000 FORMAT(TH LOOKI(9I591HssI551HesI591H)) LOOKI 13



"B3000 IXsINX 0 T T o LOOKI 1%
I1Y=INY LOOKI 15
1Z=INZ - LOOKI 16
IWAIT=0 L.OOK]I 17
T AL OO I X Y T D) LOOKI 18
IF(IWAIT) 60,40’20 LOOK] 19
— 20 ITwIWALT - e T e e e o i S LOOKT 20 -
IWAIT=]~1 LOOKI 21
o CALL  LOOKCINFOIt T o INFO2UT Y INFOS LYY s — e e o e OOE 22 -
IFC(IWAIT) 40+40920 LOOKI 23
40 RETURN L OOKT 24
END LOOKI 25
. e e S — — S e — — LGOK — .
* LISTS LOCGK 01
—% —°  LABEL - e T e - - —  LOOK 02
SUBROUTINE LOOK(INXsINYsINZ) LOOK 03
T T DTMENSTON TCHRT 200003 ICOINTICIO00 s ICOINZUI000) s IGENTIO0w Y3 ) LOOK 0%
DIMENSION IPOWR(IOO),NLETR(IOO).ITBL(losZOO).XwPG(IO) ITALLY(IOO) LOOK 05
DIMENSION INFOIT50) s INFO2(SO)»INFO3(50) LOOK @6
COMMON NWORDsNORDyNUMNGENS s MAX y MAXROW S NDEF » IWORK s IWAIT IR LOOK 07
T "COMMON LPWMAX 3 LWPGHMX > ICTMAX s TWMAX» ICMAX s INsNOUT» ITRyNJOBSNJOBS - - LOCK - 08
: COMMON ISCAN»ILOOK s ITALLYINFOLl»INFO2,INFO3,IWPGITEL LOOK 09
—_ COMMON NLETRy IPOWRS IGENZICOINIZICOINZZICHRT - 00K 10
T GO TO (3000+3000»3000+1000)4+1ITR LOOK 11
iﬁﬂﬁ‘WRtTE"ﬁﬁT?UT “TAPE NOUT #2000 INX INYvINZ - e e EROK T T2
2000 FORMAT(6H LOOK (9159 HpsISs1Hee15,1H) ) LOOK 13
— - $000 TFCINY )Y 10526320 T — T LOOK - 1%
10 ILOOK=INZ LOOK 15
T IZ=EINX LOOK—— 16—
IY==INY LOOK 17
e GO TO 30— s e s LOOK- 18
20 ILOOK=INX LOOK 19
e 1ZeINZ — " — T s ' LOOK 20
1Y=INY LOOK 21
— 30 I11sIwPGLIY) —LOOK 22
DO 230 I=1,11 LOOK 23
T ITWORK=ILOOK - - - LOOK - 24 -
LL=ITBL(IYs1}/LPWMAX , LOOK 25
T KEEITBLtIY S T T=LPWMAX®LL T T e e — - —LO0K 26
JJ=IPOWR({LL) LOOK 27
‘““‘———*KtiﬂtEfR(LL) —LOOK 28—
DO 60 J=1l,s4J LOOK 29
T T DO MELIRKK B T T T T T T T T — LOOK— 390 —
KzM+KL~] LOOK 31
T IR UR=KKR Y 50,5040 T T T - “LOOK 32
: 40 KaK=-KK LOOK 33
50 CALL SEERTIWORK IGENTLL KTy LD e LOOK ™ 34 ]
GO TO (60,80).L LOOK 35
T 7780 CONTINUE T o T T T B LOOK 36
IF(IWORK=ILOOK)} 709230,70 LOOK 137
- TO CALL CTOINCUIWORK,, ILOOK,LLY" I ' ) T LOOK ~ 38
- GO TO 225 LOOK 39
T 7 80 TST®=IWORK TTTTLOOKT &0
- IWORK=]LOOK LOOK 4]




R i 157 K O - LOOK- 42
KT=M+] LOOK 43
IF(JT=JJ) 90+90»130 T T T e e LOOK 44

90 DO 120 J=JTeJJ LOOK &5
T DU 120 M=]1,KK TLOOKTT 46
KaKK+KL~M LOOK 47
S IR (K=K 11051109100 T LOOK 48
100 K=K-KK LOOK 49
“1T0 CALL SEEKCIWORK=IGENtLLKY LY 7 7 e e o L OOK— 850
GO TO (120+230)sL LOOK 51
120 CONTINUE L OOK—52
130 IF{(KT=KK) 140,140,180 LOOK 53
140 DO 170 MeKT KK — - T T T e “LOOK 54 -
K ({KK+KL+KT)~(M+1) LOOK 55
T IR IKEKK )Y 16031665150 0 - - T +LOO0K- 56
150 K=K-KK LOOK 57
T TE0 CALL SEEKTIWORKS=IGENTLL Kt} R 5 & &1 - 1 - B
GO TO (170,230)gL LOOK 5%
“170 CONTINUE T T T e e — LOOK— 60
180 K=KL+KT=2 LOOK 61
T T I FE R Y 2009200819 - LOOK 62
190 K=K=-KK LOOK 63
‘———Zﬁﬁ"tttt“SEEKTTﬁﬁRK*“TGEN(LL.R!:Ll LOOK 66—
*- - B0 TQ (210+220) 94 LOOK 65
210 CALL COINCTUIWORKSISTHLL) - T LOOK 66
. GO TO 225 LOOK 67
T T220 CALL INFOUTIST IGENTLLK I IWORKY  — . LOOK - 68
GO TO 230 LOOK 69
T 22% CALL CLOSE o LO0KT YO
230 CONTINUE LOOK T1
CRETURN S — - o e e s T LOOK 72
END LOOK 73
‘ - - T - e - - INFO
* LISTS8 INFO 01
— % TLABEL T ITNFOTT 02
SUBROUTINE INFO(IXs1Ys12) INFO 03
T T DIMENSTON TCHRT(Z0000 ) ICOINITTIO00) s ICOINZTIO00) » IGEN(100913) - “INFO 04
DIMENSION IPOWR(100)aNLETR(lOO&:ITBL(lO:ZOO).IUPG(IO).ITALLY(IOO) INFO 05
T T DIMENSTON  INFOL (SO INFO IS0 INFO3(S50) - ——— —INFO 06 —
COMMON NNORD;NORD:NUM.&GERS.MAX:MAXROﬂ;NDEF.IHORK.I&AIT.IR INFO 07
COMHON ISCAN-ILOOK:ITALLY.INFOI:INFOZ,INF03;IwPGoITEL INFO 09
T COMMON NLETR»TPOWRs IGEN ICOINIZICOINZIC - . T INFO 10
GO TO (30C0,100091000,1000)ITR INFO 11
T 1000 WRITE OUTPUYT TAPE ROUTs2000:1XeIYelZ - - “INFO 12—
2000 FORMAT(6H INFO(aISoaloISoIH,.IS’lHi) INFO 13
3000 TALL SEEKT=IXs1YsL7 T “INFO 14
ICHRT((L)=1Z INFO 15
T CALL SEERU=1Z,=1Y,L)y ST "‘ - INFO 16
ICHRT(L)=IX INFO 17
. TWATT=IWAIT+Y T T - INFO 18
. IF(IWAIT-IWMAX) 104104520 INFO 19
T - IV INFOITIWATTI®IX - T T TINFO 20
- INFOR(IWAIT)=]IY INFO 21




el e e i e S e o s e e e e i i et et rene e

INFOSUIWAITY=IZ e INFO 22
RETURN INFO 23
20 CALL ERROR(3} - INFO 24
RETURN INFO 25
ERD e B T INFO 26
A SEEK
W T LIsT8 T T SEEK 0} 4
* LABEL SEEK 02
“ 7" SUBROUTINE SEEKTIXslYslZ) - : SEEK 03 -
DIMENSION ICHRT(20000)sICOIN1{1000),ICOIN2(1000)sIGEN{100s13) SEEK 04
e T MENS TON  TPOWRCI00 s NLETR 100 5 1TBL (1032005 WP G105 ETALLY (100} SEEK~~G5““
DIMENSION INFO1(50)sINFO2(50)sINFO3(50) SEEK 06
‘COMMON NWORDsNORDyNUMsNGENS yMAX s MAXROWsNDEF » IWORK 5 INALIT» IR SEEK O7
COMMON prnax.LwPemx.1crnax.IwMAx.ICMAx.xN.Nour.xrR.NJos.NJoas SEEK 08 j
T T COMMON ISCAN S TUOOK s ITALLY S INFO1,INFO2,INFO3 IWPGITBL - e SEEKT 09
COMMON NLETRIPOWRy»IGENy ICOIN1»ICOINZy ICHRT SEEK 10
T XUECTF{ T s JY s 2ENGENS* (T T=1 V#2* (XABSF 1 J)=1 )+ (3=XSIGNF( IsJ1¥72 - SEEK 11 -
GO TO (300G»3000»3C00,1000),1TR SEEK 12
1000 WRITE OUTPUT TAPE NOUT»2000sIXs Y512 - SEEK 13 -
2000 FORMAT(6H SEEK(+I551HssI5s1Hss1541H)) SEEK 14
3000 IF(IXY 1020320 - -SEEK 15 -
10 IZ=XLCTF(~IXslY) SEEK 16
RETURN oSEER 1T |
<. 20 1Z=mXLCTFUIXe1Y) SEEK 18
S IR UTCHRT CIZY 30540930 S e SEEK 19—
. 30 IX=ICHRT(IZ) SEER 20 }
SR A o e SEEp 21—
RETURN SEEK 22
&U 1Z=2 T ST T T T TSEER 23
RETURN SEEK 24
END - =~ e - SEEK 25
COINC
T COLIST8 T T T T e COINC 01
* LABEL COINC 02
SUBROUTINE COINCtINXSINY S INKI—— — - COINC03 —
DIMENSION ICHRT(20000), xcoxn1«1ooo».ICOINztlooes.xeﬁuxloo.la; COINC 04
——— —DIMENSTON TPOWR( 106 ) sNLETREICO) v ITBLI103200 ) IWPG( 10+ I FALLY{100) €OINC 05-
DIMENSION INFO1(50)INFO2(50)INFO3(50) COINC 06
————— ~COMMON "NWORDs NORD s NUM s NGENS yMAXsMAXROW s NDEF 5 IWORK s INAITS IR — ——— COINC 07 —
COMMON LPWMAX s LWPGMX » ICTMAX s IWMAX s ICMAX » INs NOUT s I TRoNJOB yNJOBS COINC 08
—————COMMON ISCAN; TLOOK s I TALLY S INFO L INFOZ7INFOS IWPGITBL - COINE0F—
COMMON NLETRyIPOWRs IGENICOIN1»ICOINZ, ICHRT COINC 10
e TR CINK T 25925510 - S o COENE 11
10 GO TO (20s10005100021000)sITR COINC 12
—— 1000 WRITE OUTPUT TAPE NOUT+20003INXsINYINK  — — — - —COINE-13—
2000 FORMAT(TH COINC(sIS5s1HssI5s1HseISe1H)} COINC 14
—— 20 ITALLYCINK = I TALLY LINOI+————— — — ——————— ———COINE 15—
N=0 COINC 16
—— - GO TO 30 = o —— e — - - COINC 17
25 N=-1 COINC 18
T T30 CALL ENTERUCINXs INYSNY = ) T COINC 19
.~ 40 IX=ICOIN1(1) CCINC 20
= IY=TCOINZ{1l} "COIRC 21
COINC 22

. IF(ILOOK~-1Y) 60950960



50 ILOOK=IX — — = ST e e COINC 23
60 IF(IWAIT) 120.120.70 COINC 24
( 70 DO 110 I=1l,IWAIT ~— - COINC 25
| IFCINFOL(I1=IY) 90280+90 COINC 26
T BU INFUITITEIX CCOITNC 2T
90 IF(INFO3(I)-1Y) 110+100,110 COINC 28
“ 100 INFO3TIT=IX — T e e e COINC 29 —
110 CONTINUE COINC 30
© 120 TALL SEEK{=IXs1s1T]} T T e COINC 31
CALL SEEK(=IYs1lsJJ} . COINC 32_ﬁ+
2 T0-K=TsNGENS “COINC 33"
DO 210 L=1,2 COINC
e MEZRKFLS3 S COIRC 35
‘ I=11+M COINC
e JEJIRM S s e e *”'mﬁ*“fﬂiﬁﬁ’
IF(ICHRT(J)) 13052105130 COINC 1
I30 TFUITARTUJI=TY) 150s140,150 T COINC 39 7
140 ICHRT(J)=IX COINC 40
- GO TO 155 o T “COINC %1 T
150 CALL SEEK(-ICHRT(J)-XSIGNF(K:Z*L—BJ.M) COINC 42
" CCICHRT(MY®O -~ B - COINC 43 -
155 IF(ICHRT(I)} 16091905160 COINC 44
T IS0 IR CICHRT (II=1Y ) 18071705180 COINE %5 {
© 170 ICHRT(I)=IX COINC 46
180 CALL ENTERCICHRT () s ICHRT (I sN— me e e COINE 4T -
GO TO 200 COINC 48
- 190 TCHRT (1 1= CHRT (= - - e e COENC 49
200 CALL SEEK(—ICHRT(l)nXSIGNF(KoZ*L-3)aM) COINC 50
T IR CTCHRT UMY Y 20692035206 S COINE 5T
| 203 ICHRT(M)=IX COINC 52
o 206 ICHRTUJY=0 - e COINC 53
210 CONTINUE COINC 54
T U UTFUINK)Y 250425052200 COINC 35
‘ 220 IF(N-1) 25042509230 COINC 56
T—‘ 230 NEN-1 COINC 5T
DO 240 I=1,N COINC 58
—————ICOINITII=*ICOINI{I¥1} " T T U COINC 59 -
240 ICOIN2(1)1=ICOIN2(I+1) COINC 60
— e ICOINLTIN¥T IR0 — o e COINE 61—
ICOINZ(N+1)=0 COINC 62
5 GO 1O %40 COINC 63—
250 N=0 COINC 64
— " RETURN - e T T T e - COINC 65
_END COINC 66
L= o -~ B : — ENTER —
* LISTS ENTER 01
T T LABEL AR — - - —ENTER 02
| SUBROUTINE ENTER(INXsINYsN) ENTER 03
— DIMENSION ICRRT(200001»1COINI(1000),ICOIN2(10001 s IGEN(100s13) ENTER 04
1 DIMENSION IPOWR(100)sNLETR(100)»ITBL(105200)+IWPG(10)»ITALLY(100) ENTER 05
"7 DIMENSION INFO1(501+INFO2(50)+INFO3(50} ENTER 06
. COMMON NWORDsNORDsNUMsNGENS sMAX 9y MAXROW s NDEF » IWORK » IWAITs IR ENTER 07
T COMMON LPWMAX s LWPGMXs ICTMAX s IWMAXS TCMAX s INsNOUTy ITRyNJOBINIOBS —  ENTER 08 |
ENTER 09

. COMMON ISCANsILOOKs ITALLY+INFOLlyINFOR,INFO3»IWPG»ITBL




e g - - :
COMMON NLETRsIPOWRs IGEN, ICOIN1»ICOINZSICHRY ENTER 10
IF(INX-INY) 105170520 ENTER 11
10 IX=INX T o o ' ENTER 12
1Y=INY ENTER 13
— GO—TO 30 - e ENTER 1%
20 IX=INY ENTER 15
[ IY‘INX e - e T LI TR - - S .- EN_TER 16 -
30 IF(N) 240»220,40 ENTER 17
%0 IF(IY=1COINZTIY) 100+50580 ~— ~— ~ ~— 7~ ENTER- 18 -
5C IF(IX-ICOIN1(1)} T0»170,60 ENTER 19
60 TY=1IX S -~ ENTER 20—
IX=ICOIN1(1) ENTER 21
GO TO MO0 T S s e ~ -~ - ENTER 22 —-
70 IY=ICOIN1(1) ENTER 23
e Go ,,,,, W,100 e —— e e S S e e — .- Eﬁﬁﬂi,zﬁ -
80 IF(IX-ICOIN2(1)) 100,905,100 ENTER 25
~ 79U IX=TCOINT(L s e e ENTER 26
100 IF(N-1) 220»220s110 ENTER 27
T 110 DO 150 122,N° Coe » R ENTER 28 -
IF(ICOIN2(I)-1Y}) 18051205150 ENTER 29
— 120 TF(ICOINLCDI=IX) 13051T0sk%0— ~— ——— =~~~ ~—  ENTER 30
130 IY=1X ENTER 31
IX*ICOINTTT) ' S —ENTER 32—
- ICOINM(I)=1Y ENTER 33
U GOTO1I0 S - - o o ENTER 36 -
. 140 ICOINI(I)=IX ENTER 35
- 6O TO 110 - S s e e ENTER 36
150 CONTINUE ENTER 37
—— ot N=TCMAX T 22051607160 - - e ceeme - ——ENTER 38
160 CALL ERROR(4) ENTER 39
170 RETURN ——  — 7~ oo CooTr o T ' o ENTER 40
180 IF(N-ICMAX) 150+160+160 ENTER 41
© 190 IF(N-IR) 196,196,193 S B ' ENTER 42
193 IR=N ENTER 43
196 D0 200 J*IN - T ENTER46
K=I+N-J ENTER 45
U ICOINITRF LI ICOINITRY o o ENTER 46
200 ICOINZ(K+1)=ICOIN2(K) ENTER 47
e CNENFY T e e e e e ENTER 48
ICOINI{II=IX ENTER 49
ICOINZTTT=1Y —ENTER—S50—
210 GO TO (170,170+1000+1000)sITR ENTER 51
—100U WRITE OUTPUT TAPE NOUT+2000+IXsIysN— ~~ ~———— - ~———  ENTER 52—~
2000 FORMAT(7H ENTER(»I551Hys1551Hss15+1H1) ENTER 53
IR 10 B 7 D £V T o - A T ENTER 5& -
220 IF (N=ICMAX) 2235160160 ENTER 55
223 TFIN=TIRY 230,230+2286 ENTER 56
226 IR=N ENTER 87
230 NeN#1 T T o o - ENTER 58
ICOINL(NI=IX ENTER 59
— 7 ICoINZtNY=IY T A ‘ENTER 60
GO TO 210 ENTER 61
U240 TCOINITITHIX “ENTER 62

- ICOIN2(1)=1Y 7 ) ) ENTER 63




e N e

GC 7O 170

END e

fL_* LISTE

. LABEL

T T SUBROUTINE CLOSE™

DIMENSION ICHRT(20000), ICOIN1(1000)¢ICOIN2(1000) XGEN(IOOQIB)

“ENTER 6%

ENTER 65

" ENTER 66

CLOSE

TCLOSET01

CLOSE 02

“CLOSE 03

CLOSE 04

——  ~ DIMENSTON TPOWR( 1001 sNLETR(100) s 1TBL (109200 s IWPGt10} s ITALLY(100) CLOSE 05

DIMENSION INFO1(50)sINFO2(50)+INFO3(50) CLOSE 06
COMMON NWORDINORDTNUMSNGENS sMAXSMAXROW IRDEF s IWORKvIWAT TS IR —  CLOSE 0T —
| COMMON LPWMAX s LWPGMX » ICTMAX » INMAX s ICMAX » INsNOUT » ITR9yNJOB » NJOBS CLOSE 08
77 COMMON  ISCAN ITLOOKT I TALLY s INFOIS INFORZINFOSvIWPG s 1TBL - CLOSE 09
COMMON NLETR¢IPOWR»IGEN, ICOIN1»1COIN2¢ ICHRT CLOSE 10
T Lw2eNGENS T B CLOSE 11—
J=0 CLOSE 12
M=0 ~CLOSE 13 -
10 J=J+1l CLOSE 14
I 4 S - CLOSE 15
I1=12-L+1 CLOSE 16
0o 20 Iwikslz T - CLOSE 17
IF(ICHRT(I)) 30920430 CLOSE 18
— 20 CONTIRUE T CEosE 19
o M=M+ 1 CLOSE 20
TGO TO S0 ~€LOSE- 21 -
. 30 IF(M) 4G+50540 CLOSE 22
T &0 CALL COINCUT»J=M 00— —CLOSE 23
50 IF(ISCAN=J) T0+60,70 CLOSE 24
T T 60 TSCAR=J=M - CLOSE 25
70 IF(J=NDEF) 10,80,80 CLOSE 26
© 8O NDEF=J-M~ . - CLOSE 27
RETURN CLOSE 28
T ENDTT T CLOSE 29
FINISH
. CIST8 FINTSHO1
. LABEL FINISHO2
T T SUBROUTINE FINTSH - - —FINISHO3-
| DIMENSION ICHRT(20000)»ICOIN1{1000)sICOIN2(1000)»IGEN(100s13) FINISHO4

———— DIMENSTON TPOWRTLIO00) sNLETR(I00)»ITBLI105200), IWPGt10 s ITALLY (100) FINISHOS -

DIMENSION INFO1(50)+INFOZ2(50)+INFO3(50) FINISHOS
COMMON NWORDyNORD s RUMsNGENS yMAX S MAXROWSNOEFS IWORK Y IWATI TS IR FINISHOT —
COMMON LPWMAX s LWPGMX s ICTMAX » IWMAX » ICMAX » INsNQUT » ITRsNJOB »NJOBS FINISHOS
T T COMMON TSCAN Y TLOOK» ITALLY s INFOLY INFOYINFOSSIWPGITBL — -~ FINISHO9
COMMON NLETRoIPOWR:lGEN.XCOINl;ICOINZoICHRT FINISHI1O
e f-mﬁm.ﬁumm : T FIN 13ﬁ11 -
WRITE OUTPUT TAPE Nour.ao.NORD,MAx,IR FINISH12
T T WRITE OUTPUT TAPE NOUT,60 “FINISH1I3
DO 9 I=1,NWORD FINISHl4
7 9 WRITE OUTPUT TAPE NOUT»TUsIITALLY(IY FINISHL1S
DO 10 I=1sNGENS FINISH16
****** « IRFOLILY®T - FINISH17
| -, 10 INFO3(1)=-1] FINISH18
<« T WRITE OUTPUT TAPE NOUT»40»UINFOL (I Ty INFOSTTIT o Iy NGENSYT —— FINTSHIS —
o DO 20 I=14NDEF FINISH20




Ja2¥ {I~1)#¥NGENS¥1 — o e T : T FINISHZ1
K=2% J#NGENS FINISHZ2
20 WRITE OUTPUT TAPE NOUT»S0sI s tICHRTIL ) »yLuJd4K) FINISH23
RETURN FINISH24
““““““ T30 FORMATIZBHITHE ORDER OF THE GROUP IS:1B8y5H MAX=, 183 TH COINCE,1%/77 FINTSHZS
40 FORMAT(6X918167) FINISH26
— 850 FORMATUIOI®) ~— e FINISH27
60 FORMAT(10Xs10HWORD TALLY/) FIN]ISH28
T T FORMAT(B8 X219y T I T T T T s e - FINTSH29 -
END FINISH30
JR— . — e et o _ERRGR R
* LISTS ERROR 01
oW T LABEL - - T T s ERROR 02
SUBROUTINE ERRORI(])} ERROR 03
T DIMENSTON TCHRT 200001 ICOINTIT10000 , ICOINZEI000)s1GENT1I00913) - - —ERROR 04 -
DIMENSION IPOwR(IOO)sNLETR(100).1T8L(10o2u0},IwPG(lolngALLYKIOO) ERROR 05
T T T DIMENSTON INFOIUSO Y » INFOZUSOY S INFO3(SOY 7~ ERROR 06
COMMON NWORDsNORDgNUMNGENS s MAX sMAXROWSNDEF s IWORK s IWAIT IR ERRCR 07
COMMON LPWMAX s LWPGHMX s ICTMAX 3 IWMAX s ICMAX s ININOUT» I TRNJOB s NJOBS ERROR 08
COMMON ISCAN;ILOOK-ITALLY:INFOI.INFOZ’XNFOS.IWPGoITbL ERROR 09
T COMMON NLETRSIPOWRY IGENS ICOCINYL»ICOINZSICHRT — - e - ERROR 10
GO TO (10930650970} s1 ERROR 11
‘ IO WRITE OQUTPUT TAPE NOUT 20 —— ERROR 12 —
LI GQ TO 90 ERROR 13
T 20 FORMATI3GHIMAX ITMUM WORDS7GENERATOR EXCEEDED e 7Y —— —— ~ ERRORI4 -~ -
. 30 WRITE OQUTPUT TAPE NOUT .40 ERROR 15
e GO TO 90 — - s - ERROR 16
40 FORMAT(39HIMULTIPLICATION TABLE STORAGE EXCEEDED.I/) ERROR 17
TS50 WRITE OUTPUTY TAPE RQUT,,60 T o TTERROR 18
GO TO 90 ERROR 19
T B0 FORMATUGA4HIWAITING INFORMATION TABLE STORAGE EXCEEDEDC77)Y ~ ~ ERROR 20
70 WRITE QUTPUT TAPE NOUT’BO ERROR 21
D GO TO YO ‘ T c ERROR 22
80 FORMAT(3THICOINCIDENCE TABLE CAPACITY EXCEEDhD.//) ERROR 23
9O CALL CLOCKteH ERRORYy =11} - ERROR 24
CALL DUMP(lCHRT(ZOOOO}’ICHRT(19800):ZoICHRT(ZOO).NNORD;Z) ERROR 25
RETURN o “ERROR 26
END ERROR 27
T T T 00000580
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